Extensive Parallel Processing on Scale-Free Networks
نویسندگان
چکیده
منابع مشابه
Extensive parallel processing on scale-free networks.
We adapt belief-propagation techniques to study the equilibrium behavior of a bipartite spin glass, with interactions between two sets of N and P=αN spins each having an arbitrary degree, i.e., number of interaction partners in the opposite set. An equivalent view is then of a system of N neurons storing P diluted patterns via Hebbian learning, in the high storage regime. Our method allows anal...
متن کاملSandpile on scale-free networks.
We investigate the avalanche dynamics of the Bak-Tang-Wiesenfeld sandpile model on scale-free (SF) networks, where the threshold height of each node is distributed heterogeneously, given as its own degree. We find that the avalanche size distribution follows a power law with an exponent tau. Applying the theory of the multiplicative branching process, we obtain the exponent tau and the dynamic ...
متن کاملScale-free networks on lattices.
We suggest a method for embedding scale-free networks, with degree distribution Pk approximately k(-lambda), in regular Euclidean lattices accounting for geographical properties. The embedding is driven by a natural constraint of minimization of the total length of the links in the system. We find that all networks with lambda>2 can be successfully embedded up to a (Euclidean) distance xi which...
متن کاملExactly scale-free scale-free networks
Many complex natural and physical systems exhibit patterns of interconnection that conform, approximately, to a network structure referred to as scale-free. Preferential attachment is one of many algorithms that have been introduced to model the growth and structure of scale-free networks. With so many different models of scale-free networks it is unclear what properties of scale-free networks ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2014
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.113.238106